Article 2319

Title of the article

INVERSE PROBLEMS OF RESTORING ANISOTROPIC DIAPHRAGM PARAMETERS IN A RECTANGULAR WAVEGUIDE 

Authors

Derevyanchuk Ekaterina Dmitrievna, Candidate of physical and mathematical sciences, researcher, research center “Supercomputer modeling in electrodynamics”, Penza State University (40, Krasnaya street, Penza, Russia), E-mail: katyader11@yandex.ru
Loginov Maksim Aleksandrovich, Student, Penza State University (40, Krasnaya street, Penza, Russia), E-mail: mmm@pnzgu.ru
Skorkin Vladimir Vital'evich, Student, Penza State University (40, Krasnaya street, Penza, Russia), E-mail: skorkin90@bk.ru
Frolova Ol'ga Vyacheslavovna, Student, Penza State University (40, Krasnaya street, Penza, Russia), E-mail: olga.fov@yandex.ru 

Index UDK

517.3 

DOI

10.21685/2072-3040-2019-3-2 

Abstract

Background. This paper is devoted to inverse problems of electromagnetic parameters reconstruction of isotropic and anisotropic diaphragms. The aim of study is to develop numerical-analytical methods of solving inverse problems.
Materials and methods. We consider two inverse problems: inverse problem of complex permittivity reconstruction and inverse problem of permittivity and permeability tensors reconstruction of multi-sectional diaphragm. The problem is devoted to the boundary value problem for Maxwell’s equations.
Results. We obtain numerical-analytical methods of the solution to the both inverse problems.
Conclusions. The numerical methods of solving these inverse problems and numerical results can be used in practice to reconstruct electromagnetic characteristics of modern materials. 

Key words

electrodynamics problem, inverse problem, complex permittivity, isotropic, anisotropic material, tensor, permeability tensor, permittivity tensor 

 Download PDF
References

1. Vaynshteyn L. A. Elektromagnitnye volny [Electromagnetic waves]. Moscow: AST, 1988, 440 p. [In Russian]
2. Derevyanchuk E. D., Rodionova I. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2018, no. 2 (46), pp. 56–63. [In Russian]
3. Makeeva G. S., Golovanov O. A. Matematicheskoe modelirovanie elektroupravlyaemykh ustroystv teragertsovogo diapazona na osnove grafena i uglerodnykh nanotrubok: monografiya [Mathematical modeling of electrically controlled terahertz devices based on graphene and carbon nanotubes: monograph]. Penza: Izd-vo PGU, 2018, 303 p. [In Russian]
4. Medvedik M. Yu., Smirnov Yu. G. Obratnye zadachi vosstanovleniya dielektricheskoy pronitsaemosti neodnorodnogo tela v volnovode [Inverse problems of reconstructing the dielectric constant of an inhomogeneous body in a waveguide]. Penza: Izd-vo PGU, 2014, 76 p. [In Russian]
5. Nikol'skiy V. V., Nikol'skaya T. I. Elektrodinamika i rasprostranenie radiovoln [Electrodynamics and radio wave propagation]. Moscow: Nauka, Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1989, 544 p. [In Russian]
6. Strizhachenko A. V. Izmerenie anizotropnykh dielektrikov na SVCh. Teoreticheskiy analiz, ustroystva, metody [Measurement of anisotropic dielectrics in microwave. Theoretical analysis, devices, methods]. LAP LAMBERT Academic Publishing, 2011, 288 p. [In Russian]
7. Usanov D. A., Skripal' A. V., Nikitov S. A., Merdanov M. K., Evteev S. G. Fizika volnovykh protsessov i radiotekhnicheskie sistemy. [Physics of wave processes and radio engineering systems] 2017, vol. 20, no. 3, pp. 43–51. [In Russian]
8. Shvan Kh. P., Foster K. R. Trudy Instituta inzhenerov po elektronike i radioelektronike [Proceedings of the Institute of electronics and electronics engineers]. 1980, vol. 68, no. 1, pp. 121–132. [In Russian]
9. Analytical and numerical methods in electromagnetic wave theory. Edited by M. Hashimoto, M. Idemen, and O.A. Tretyakov. Tokyo: Science House Co., 1993.
10. Baena J. D., Jelinek L., Marques R., Zehentner J. Appl. Phys. Lett. 2006, vol. 88, pp. 134108-1–134108-3.
11. Beilina L., Shestopalov Yu. V. Inverse problems and large–scale computations. New York: Springer, 2013, 223 p.
12. Shamonina E. Phys. Stat. Sol. b. 2008, vol. 245, pp. 1471–1482.
13. Smirnov Yu. G. Mathematical methods for electromagnetic problems: monograph. Penza, 2009, 266 p.
14. Norgren M., He S. IEEE Transactions on Microwave Theory Techniques. 1995, vol. 43, no. 6, pp. 1315–1321.
15. Derevyanchuk E. D., Smirnov Yu. G. International Conference of Numerical Analysis and Applied Mathematics (Icnaam 2016). Proceeding of International Conference of Mathematics. Rhodes, Greece, 2017, July, p. 2–s2.

 

Дата создания: 09.12.2019 08:43
Дата обновления: 09.12.2019 09:01